# Ex. 1 Standard redox potential — Lead-acid battery

The overall chemical reaction in a lead-acid battery (car) is:

$$Pb + PbO_2 + 2 H_2SO_4 \iff 2 PbSO_4 + 2 H_2O$$

Looking up the thermodynamic data for this reaction (e.g., in CRC Handbook hbcpnetbase.com, NIST.gov website, CRM's form, etc.), you would find the standard-state data at 25°C:

| Compound                               | $\begin{array}{c c} \Delta_{\mathrm{f}} \tilde{h}_{25^{\circ}\mathrm{C}}^{\bigoplus} & \qquad \qquad \tilde{s}_{25^{\circ}\mathrm{C}}^{\bigoplus} \\ \mathrm{kJ/mol} & \qquad \mathrm{J/(mol \cdot K)} \end{array}$ |                |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| PbSO <sub>4</sub>                      | -920.00                                                                                                                                                                                                             | 148.5          |
| Pb                                     | 0                                                                                                                                                                                                                   | 64.80          |
| $\mathrm{PbO}_2$                       | -274.47                                                                                                                                                                                                             | 71.78          |
| H <sub>2</sub> SO <sub>4</sub> aqueous | -909.00                                                                                                                                                                                                             | 20.08          |
| $H_2O(1)$                              | -285.80                                                                                                                                                                                                             | 70.00          |
| H <sup>+</sup> aqueous                 | 0 (definition)                                                                                                                                                                                                      | 0 (definition) |

Derive from these the standard redox potential for a lead-acid battery at 25°C.

# **Solution**

Filling in the data for the complete reaction gives:

$$\Delta_r \tilde{\hbar}^{\bigodot}_{25^{\circ}C} = -318.86 \text{ kJ/mol and } \Delta_r \tilde{s}^{\bigodot}_{25^{\circ}C} = 260.25 \text{ J/(mol} \cdot \text{K)}$$

The Gibbs free enthalpy for 0°C and 40°C is then computed using the usual linearization:

$$\Delta_{\rm r} \tilde{g}^{\ominus}_{0^{\circ}\rm C} = -389.909~\rm kJ/mol~and~} \Delta_{\rm r} \tilde{g}^{\ominus}_{40^{\circ}\rm C} = -400.319~\rm kJ/mol~$$

With 2 electrons exchanged, the standard redox potential is hence:

$$E_{0^{\circ}\text{C}}^{\ominus} = 2.021 \text{ V} \text{ and } E_{40^{\circ}\text{C}}^{\ominus} = 2.075 \text{ V}$$

Another way would be to compute  $E^{\Theta}$  for each half-reaction (electrode). Below for 25°C:

Cathode (discharge): 
$$PbO_2 + 2H^+ + 2e^- + H_2SO_4 \iff PbSO_4 + 2H_2O \quad E^{\Theta} = 1.685 \text{ V}$$

Anode (discharge): 
$$Pb + H_2SO_4 \iff PbSO_4 + 2H^+ + 2e^ E\Theta = -0.356 \text{ V}$$

The (standard) potential difference between both electrodes is then 2.041 V (25°C).

# Ex. 2 Standard redox potential – Influence of temperature and gases

The table below gives the standard molar enthalpy-change of formation and the standard molar entropy for some compounds, at 1 bar and 25°C.

| Compound          | $\Delta_{ m f} 	ilde{h}^{\ominus}_{25^{\circ}{ m C}}$ | $\tilde{s}^{\ominus}_{25^{\circ}\mathrm{C}}$ |  |
|-------------------|-------------------------------------------------------|----------------------------------------------|--|
|                   | kJ/mol                                                | J/(mol·K)                                    |  |
| $H_2$             | 0                                                     | 130.6                                        |  |
| $O_2$             | 0                                                     | 205.0                                        |  |
| $H_2O$ (1)        | -285.8                                                | 69.9                                         |  |
| $H_2O$ (g)        | -241.8                                                | 188.7                                        |  |
| $\mathrm{CH_{4}}$ | -74.85                                                | 186.2                                        |  |
| $CO_2$            | -393.5                                                | 213.6                                        |  |

- 1. Compute the *standard* redox potential,  $E^{\Theta}$ , for the electrochemical oxidation of:
  - a) hydrogen at 25°C;
  - b) methane at 25°C.
- 2. Write the *standard* redox potential as a function of *temperature*,  $E^{\Theta}(T)$ .
  - a) Plot  $E^{\Theta}$  (T) in the interval  $T = [25, 1000]^{\circ}$ C, for hydrogen and for methane.
  - b) Draw conclusions regarding the influence of temperature and of gases on  $E^{\Theta}$ .

#### Solution

#### Reminder & nomenclature:

Standard redox potential  $E_{(T)}^{\Theta}$  = potential difference between both electrodes where each chemical participating in the reaction is considered at its reference standard-state ( $\Theta$ ). Therefore, it doesn't account for specific concentrations, which typically occur when the fuel cell is operating (net external electrical current).

The relation between the standard redox potential  $E^{\Theta}$  and thermodynamics is: <sup>2</sup>

$$\Delta_{\mathbf{r}}\tilde{g}_{(T)}^{\ominus} = -\nu_{\mathbf{e}}\mathcal{F}E_{(T)}^{\ominus}$$

The standard molar Gibbs free enthalpy-change of reaction  $\Delta_{\mathbf{r}} \tilde{g}_{(T)}^{\ominus}$  is given by the fundamental relation:

$$\Delta_{\mathbf{r}}\tilde{g}_{(T)}^{\ominus} = \Delta_{\mathbf{r}}\tilde{h}_{(T)}^{\ominus} - T\Delta_{\mathbf{r}}\tilde{s}_{(T)}^{\ominus}$$

Caution: T must be taken in Kelvin!

The enthalpies  $(\Delta_r \tilde{h}_{(T)}^{\Theta})$  and entropies  $(\Delta_r \tilde{s}_{(T)}^{\Theta})$  of a reaction are determined thanks to the Hess' law, using the enthalpies of formation,  $\Delta_f \tilde{h}_k^{\square}$ , respectively entropies  $(\tilde{s}_k)$ , of the k reactants and products. This law holds true for standard or non-standard states, as long as state is consistent.

#### Hess' law:

$$\Delta_{\mathbf{r}} \tilde{h}_{(T)}^{\ominus}) = \sum_{j} \nu_{j} \ \Delta_{\mathbf{f}} \tilde{h}_{j} - \sum_{i} \nu_{i} \ \Delta_{\mathbf{f}} \tilde{h}_{i} \qquad \text{for a reaction such as: } \sum_{i} \nu_{i} \ \text{Reactant}_{i} \Leftrightarrow \sum_{j} \nu_{j} \ \text{Product}_{j}$$

The validity of this law extends to both  $\Delta_r \tilde{s}^{\ominus}_{(T)}$  and  $\Delta_r \tilde{g}^{\ominus}_{(T)}$ .

The stoichiometric coefficients are determined by writing the redox reactions:

- hydrogen:  $H_2 + \frac{1}{2} O_2 => H_2O$
- methane:  $CH_4 + 2 O_2 => 2 H_2O + CO_2$

The number of electrons that are exchanged are determined by writing the half-reactions. For the case of methane, they are:

$$-CH_4 = > C^{4+} + 4e^{-} + 4H^{+} + 4e^{-}$$
 and  $2C_2 + 8e^{-} = > 4C^{2-}$ 

### Standard redox potential $E^{\Theta}$ at 25°C

The thermodynamic data in the provided table are given for 25°C and 1 bar. Therefore, the standard Gibbs free enthalpy of the reaction at 25°C can be computed directly from these values.

<sup>&</sup>lt;sup>1</sup> Although standard state is often marked with ( $^{0}$ ) for convenience, the original symbol  $^{\Theta}$  is purposefully used here to highlight the non-zero nature of standard-state (see "thinking further").

<sup>&</sup>lt;sup>2</sup> Note that this relation holds in non-standard conditions, too:  $\Delta_r \tilde{g} = -\nu_e \mathcal{F}E = \Delta_r \tilde{g}^{\ominus} + \mathcal{R}T \ln(Q)$ .

Hydrogen at 25°C:

$$H_2 + \frac{1}{2} O_2 => H_2 O(l)$$

Applying Hess' law:

$$\Delta_{r}\tilde{h}_{25^{\circ}C}^{\bigoplus} = 1\,\Delta_{f}\tilde{h}_{H_{2}O(1)}^{\bigoplus} - 0.5\,\Delta_{f}\tilde{h}_{O_{2}}^{\bigoplus} - 1\,\Delta_{f}\tilde{h}_{H_{2}}^{\bigoplus} = -285.8\cdot10^{3} - 0 - 0 = -285'800\,\text{J/mol}$$

$$\Delta_{\rm r} \tilde{s}^{\varTheta}_{25^{\circ}{\rm C}} = 1 \ \tilde{s}^{\varTheta}_{{\rm H}_2{\rm O}(l)} - 0.5 \ \tilde{s}^{\varTheta}_{{\rm O}_2} - 1 \ \tilde{s}^{\varTheta}_{{\rm H}_2} = 69.9 - 0.5 * 205.0 - 130.6 = -163.2 \ {\rm J/(mol\cdot K)}$$

Gibbs:

$$\Delta_{\rm r} \tilde{g}_{25^{\circ}{\rm C}}^{\,\ominus} = \Delta_{\rm r} \tilde{h}_{25^{\circ}{\rm C}}^{\,\ominus} - T \Delta_{\rm r} \tilde{s}_{25^{\circ}{\rm C}}^{\,\ominus} = -285'800 + 298.15 \cdot 163.2 = -237'142 \,\text{J/mol}$$

$$E_{25^{\circ}\text{C}}^{\ominus} = -\frac{\Delta_{\text{r}} \tilde{g}_{25^{\circ}\text{C}}^{\ominus}}{\nu_{\text{e}} \mathcal{F}} = \frac{237'142}{2 \cdot 96485.3} = 1.229 \text{ V}$$

Methane at 25°C:

$$CH_4 + 2 O_2 => 2 H_2O(1) + CO_2$$

Caution:  $v_e = 8$ 

A similar calculation as for (a) gives:

$$\Delta_{\rm r} \tilde{h}_{25^{\circ}\rm C}^{\ominus} = -890'250 \,\text{J/mol}$$

$$\Delta_{\rm r} \tilde{s}_{25^{\circ}{\rm C}}^{\ominus} = -242.8 \, \text{J/(mol} \cdot \text{K)}$$

$$\Delta_{\rm r} \tilde{g}^{\ominus}_{25^{\circ}{\rm C}} = \Delta_{\rm r} \tilde{h}^{\ominus}_{25^{\circ}{\rm C}} - T \Delta_{\rm r} \tilde{s}^{\ominus}_{25^{\circ}{\rm C}} = -817'919 \,\text{J/mol}$$

$$E_{25^{\circ}\text{C}}^{\ominus} = -\frac{\Delta_{\text{r}}\tilde{g}_{25^{\circ}\text{C}}^{\ominus}}{\nu_{\text{e}}\mathcal{F}} = 1.060 \text{ V}$$

Standard redox potential as a function of temperature,  $E^{\Theta}(T)$ 

$$E^{\Theta}(T) = -\frac{\Delta_{\mathrm{r}} \tilde{g}_{(T)}^{\Theta}(T)}{\nu_{\mathrm{o}} \mathcal{F}}$$

In this relation, only  $\Delta_r \tilde{g}_{(T)}^{\Theta}$  is function of the temperature. It can be expressed as:

$$\Delta_{\mathbf{r}}\tilde{g}_{(T)}^{\Theta}(T) = \Delta_{\mathbf{r}}\tilde{h}_{(T)}^{\Theta}(T) - T\Delta_{\mathbf{r}}\tilde{s}_{(T)}^{\Theta}(T)$$

As long as there is no phase change, the dependency of  $\Delta_{\mathbf{r}} \tilde{h}_{(T)}^{\Theta}$  and  $\Delta_{\mathbf{r}} \tilde{s}_{(T)}^{\Theta}$  with temperature is usually relatively low compared to the (direct) linear dependency of  $\Delta_{\mathbf{r}} \tilde{g}_{(T)}^{\Theta}$  with temperature. Hence, a good approximation is:

$$\frac{\partial \Delta_{\mathbf{r}} \tilde{g}_{(T)}^{\ominus}(T)}{\partial T} \cong -\Delta_{\mathbf{r}} \tilde{s}_{(T)}^{\ominus}$$

It follows:

$$\frac{\partial E^{\Theta}(T)}{\partial T} \cong \frac{\Delta_{\mathbf{r}} \tilde{s}_{(T)}^{\Theta}}{\nu_{\mathbf{e}} \mathcal{F}}$$

Note that the second term is the slope of  $E^{\Theta}$  near  $T = T_{\text{ref}}$ , with  $T_{\text{ref}}$  referring to the temperature for which the standard entropy of the reaction was computed. Integrating this relation gives:

$$E^{\ominus}(T) \cong E_{T_{\text{ref}}}^{\ominus} + \frac{\partial E^{\ominus}(T)}{\partial T} \bigg|_{T_{ref}} (T - T_{\text{ref}}) = \frac{\Delta_{\text{r}} \tilde{g}_{T_{\text{ref}}}^{\ominus} + \Delta_{\text{r}} \tilde{s}_{T_{\text{ref}}}^{\ominus} (T - T_{\text{ref}})}{\nu_{\text{e}} \mathcal{F}}$$

In case more accurate values are necessary, the variation of  $\Delta_r \tilde{h}_{(T)}^{\ominus}$  and  $\Delta_r \tilde{s}_{(T)}^{\ominus}$  with temperature should be taken into account. They can be expressed in function of temperature thanks to Kirchhoff's law.

#### Kirchhoff's law:

$$\frac{\partial \Delta_{\mathbf{r}} \tilde{h}_{(T)}^{\Theta}(T)}{\partial T} = \Delta \tilde{c}_{p}^{\text{op}}(T)$$

Integration of this equation permits the evaluation of the heat of reaction at one temperature from measurements at another temperature. It can be decomposed such as to integrate the heat-capacities for individual compounds.  $\Delta \tilde{c}_p^{\text{con}}(T)$  can be found in tables of reference, typically in the form of polynomials.

#### Evolution of $E^{\Theta}$ with temperature for hydrogen and for methane

#### Hydrogen:

Starting at 25°C with liquid H<sub>2</sub>O, the standard entropy of reaction is retrieved from (a):

$$\Delta_{\rm r} \tilde{s}_{25^{\circ}{\rm C}}^{\ominus} = -163.2 \, \text{J/(mol \cdot K)}$$

So the slope is:

$$\left. \frac{\partial E^{\Theta}(T)}{\partial T} \right|_{25^{\circ}C} \cong -846 \,\mu\text{V/K}$$

Note that it represent less than 1‰ change per degree.

Above 100°C, the product is steam, for which the enthalpy of formation and entropy are different from those for water (discontinuity). Nevertheless, pay attention that even if the standard-state of the compound is not gaseous at, e.g., 25°C, data is often virtually reported to an equivalent gaseous standard-state at 25°C, as is the case here.

$$\Delta_{\rm r} \tilde{h}^{\ominus}_{25^{\circ}{\rm C}\,(g)} \,= -241'800\,{\rm J/mol} \qquad \qquad \Delta_{\rm r} \tilde{s}^{\ominus}_{25^{\circ}{\rm C}\,(g)} = -44.4\,{\rm J/(mol\cdot K)}$$

Gibbs:

$$\Delta_{\mathrm{r}} \tilde{g}_{25^{\circ}\mathrm{C}(g)}^{\ominus} = -228'562 \,\mathrm{J/mol} \qquad E_{25^{\circ}\mathrm{C}(g)}^{\ominus} = 1.184 \,\mathrm{V}$$

$$\frac{\partial E^{\ominus}(T)}{\partial T} \bigg|_{25^{\circ}\mathrm{C}(g)} \cong -230 \,\mathrm{\mu V/K}$$

This slightly deviates from the linear regression value obtained (275  $\mu$ V/K) from "correct" data tabulated below and represented in figure 1.

The value at 1000°C can be computed in one step, from 25°C (g)  $\rightarrow$  1000°C (g):

$$E_{1000^{\circ}\text{C}}^{\ominus} = 1.184 - 230 \cdot 10^{-6} \cdot (1000 - 25) = 0.960 \text{ V}$$

Or in two steps (piecewise bi-linear), from 25°C (1)  $\rightarrow$  100°C (1/g)  $\rightarrow$  1000°C (g):

$$E_{1000^{\circ}\text{C}}^{\ominus} = 1.229 - 846 \cdot 10^{-6} \cdot (100 - 25) - 230 \cdot 10^{-6} \cdot (1000 - 100) = 0.958 \text{ V}$$

Rigorously correct calculations —involving integration of Kirchhoff's law—gave 0.920 V, hence the error of the approximation at 1000°C is around 4%.

#### Methane:

Following the same procedure as for hydrogen above:

In the liquid phase, reusing the value  $\Delta_r \tilde{s}_{25^{\circ}C}^{\ominus} = -248.2 \text{ J/(mol} \cdot \text{K)}$ , the slope is computed:

$$\left. \frac{\partial E^{\Theta}(T)}{\partial T} \right|_{25^{\circ}C} \cong -322 \,\mu\text{V/K}$$

Note that again it represent less than 1‰ change per degree.

In the (virtually) gaseous phase:

$$\Delta_{\mathbf{r}}\tilde{s}_{25^{\circ}C(g)}^{\Theta} = -5.17 \text{ J/(mol \cdot K)} \qquad \Delta_{\mathbf{r}}\tilde{g}_{25^{\circ}C(g)}^{\Theta} = -801 \text{ kJ/mol} \qquad E_{25^{\circ}C(g)}^{\Theta} = 1.037 \text{ V}$$

$$\frac{\partial E^{\Theta}(T)}{\partial T} \bigg|_{25^{\circ}C(g)} \cong -6.7 \text{ \muV/K}$$

The value at 1000°C is computed in one step, from 25°C (g)  $\rightarrow$  1000°C (g):

$$E_{1000^{\circ}\text{C}}^{\Theta} = 1.037 - 6.7 \cdot 10^{-6} \cdot (1000 - 25) = 1.030 \text{ V (drop by 7 mV)}$$

Rigorously correct calculations —involving integration of Kirchhoff's law—gave 1.037 V, hence the error of the approximation at 1000°C is less than 1%.

# Conclusions regarding the influence of temperature and of gases on $E^{\Theta}$

In the following tables, the variation of  $\Delta_{\mathbf{r}} \tilde{h}_{(T)}^{\Theta}$  and  $\Delta_{\mathbf{r}} \tilde{s}_{(T)}^{\Theta}$  with temperature was taken into account. This variation is quite small as can be seen, within either the liquid or vapor phase. The difference is however significant at the phase-change.

The standard redox potential for the electrochemical oxidation of methane is practically independent of temperature (contrary to  $H_2$ ), due to the fact that entropy of reaction is close to zero throughout the vapor phase. In the gaseous phase, thermodynamic efficiency is basically  $\approx 1 \; (\Delta_r \tilde{g}_{(T)}^{\Theta}/\Delta_r \tilde{h}_{(T)}^{\Theta})$ , see table 2).

For H<sub>2</sub> oxidation, however, thermodynamic losses at high temperature become important, e.g., at 1000°C they amount to  $1 - (\Delta_r \tilde{g}_{1000^{\circ}\text{C}}^{\ominus}/\Delta_r \tilde{h}_{25^{\circ}\text{C (g)}}^{\ominus}) = 27\%$  (LHV; 38% for HHV, 25°C (*l*)).

Table 1 — Standard redox potential for oxidation of hydrogen between 25°C and 1'000°C

| ш                    | $T_{ m ref}$ | $T_{ m ref}$ | $\Delta_{ m r} 	ilde{h}_{T_{ m ref}}^{\ominus}$ | $\Delta_{ m r} 	ilde{s}_{T_{ m ref}}^{\ominus}$ | $\Delta_{ m r} 	ilde{g}^{\ominus}_{T_{ m ref}}$ | $E_{T_{	ext{ref}}}^{igoplus}$ |
|----------------------|--------------|--------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------|
| $H_2$                | °C           | K            | J/mol                                           | J/(mol·K)                                       | J/mol                                           | V                             |
|                      | 25           | 298.15       | -285'840                                        | -163.2                                          | -237'192                                        | 1.229                         |
|                      | 50           | 323.15       | -285'042                                        | -160.6                                          | -233'146                                        | 1.208                         |
| H <sub>2</sub> O (1) | 100          | 373.15       | -283'461                                        | -156.0                                          | -225'233                                        | 1.167                         |
| H <sub>2</sub> O (g) | 100          | 373.15       | -242'562                                        | -46.6                                           | -225'182                                        | 1.167                         |
|                      | 200          | 473.15       | -243'506                                        | -48.8                                           | -220'407                                        | 1.142                         |
|                      | 300          | 573.15       | -244'407                                        | -50.5                                           | -215'435                                        | 1.116                         |
|                      | 400          | 673.15       | -245'263                                        | -51.9                                           | -210'309                                        | 1.090                         |
|                      | 500          | 773.15       | -246'071                                        | -53.0                                           | -205'059                                        | 1.063                         |
|                      | 600          | 873.15       | -246'831                                        | -54.0                                           | -199'706                                        | 1.035                         |
|                      | 700          | 973.15       | -247'543                                        | -54.7                                           | -194'270                                        | 1.007                         |
|                      | 800          | 1'073.15     | -248'207                                        | -55.4                                           | -188'762                                        | 0.978                         |
|                      | 900          | 1'173.15     | -248'821                                        | -55.9                                           | -183'194                                        | 0.949                         |
|                      | 1'000        | 1'273.15     | -249'387                                        | -56.4                                           | -177'576                                        | 0.920                         |

Table 2 — Standard redox potential for oxidation of methane between 25°C and 1'000°C

| CH <sub>4</sub>      | $T_{ m ref}$ | $T_{\rm ref}$ | $\Delta_{ m r} 	ilde{h}_{T_{ m ref}}^{\ominus}$ | $\Delta_{\mathbf{r}}\tilde{s}_{T_{\mathbf{ref}}}^{\Theta}$ | $\Delta_{ m r} {	ilde g}_{T_{ m ref}}^{\ominus}$ | $E_{T_{\mathrm{ref}}}^{\ominus}$ |
|----------------------|--------------|---------------|-------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|----------------------------------|
| CH <sub>4</sub>      | °C           | K             | J/mol                                           | J/(mol·K)                                                  | J/mol                                            | V                                |
|                      | 25           | 298.15        | -890'340                                        | -242.7                                                     | -817'970                                         | 1.0597                           |
|                      | 50           | 323.15        | -888'005                                        | -235.2                                                     | -811'997                                         | 1.0520                           |
| H <sub>2</sub> O (l) | 100          | 373.15        | -883'390                                        | -221.9                                                     | -800'578                                         | 1.0372                           |
| $H_2O(g)$            | 100          | 373.15        | -801'593                                        | -3.0                                                       | -800'476                                         | 1.0371                           |
|                      | 200          | 473.15        | -800'748                                        | -1.0                                                       | -800'285                                         | 1.0368                           |
|                      | 300          | 573.15        | -800'105                                        | 0.3                                                        | -800'255                                         | 1.0368                           |
|                      | 400          | 673.15        | -799'694                                        | 0.9                                                        | -800'319                                         | 1.0369                           |
|                      | 500          | 773.15        | -799'530                                        | 1.2                                                        | -800'426                                         | 1.0370                           |
|                      | 600          | 873.15        | -799'620                                        | 1.1                                                        | -800'539                                         | 1.0371                           |
|                      | 700          | 973.15        | -799'969                                        | 0.7                                                        | -800'628                                         | 1.0373                           |
|                      | 800          | 1'073.15      | -800'579                                        | 0.1                                                        | -800'668                                         | 1.0373                           |
|                      | 900          | 1'173.15      | -801'453                                        | -0.7                                                       | -800'638                                         | 1.0373                           |
|                      | 1'000        | 1'273.15      | -802'592                                        | -1.6                                                       | -800'524                                         | 1.0371                           |

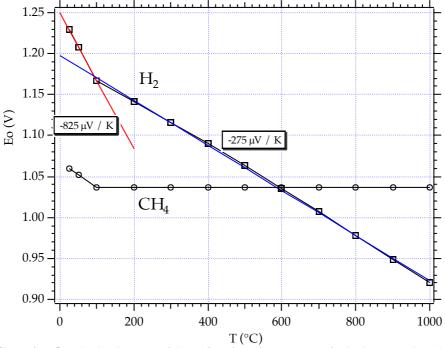



Figure 1 — Standard redox potential as a function of temperature for hydrogen and methane